Counterfactual Reasoning with Knowledge Graph Embeddings

Counterfactual Reasoning with Knowledge Graph Embeddings

Abstract

Knowledge graph embeddings (KGEs) were originally developed to infer true but missing facts in incomplete knowledge repositories.In this paper, we link knowledge graph completion and counterfactual reasoning via our new task CFKGR. We model the original world state as a knowledge graph, hypothetical scenarios as edges added to the graph, and plausible changes to the graph as inferences from logical rules. We create corresponding benchmark datasets, which contain diverse hypothetical scenarios with plausible changes to the original knowledge graph and facts that should be retained. We develop COULDD, a general method for adapting existing knowledge graph embeddings given a hypothetical premise, and evaluate it on our benchmark. Our results indicate that KGEs learn patterns in the graph without explicit training. We further observe that KGEs adapted with COULDD solidly detect plausible counterfactual changes to the graph that follow these patterns. An evaluation on human-annotated data reveals that KGEs adapted with COULDD are mostly unable to recognize changes to the graph that do not follow learned inference rules. In contrast, ChatGPT mostly outperforms KGEs in detecting plausible changes to the graph but has poor knowledge retention. In summary, CFKGR connects two previously distinct areas, namely KG completion and counterfactual reasoning.

Grafik Top
Authors
  • Zellinger, Lena
  • Stephan, Andreas
  • Roth, Benjamin
Grafik Top
Shortfacts
Category
Paper in Conference Proceedings or in Workshop Proceedings (Speech)
Event Title
18th Conference of the European Chapter of the Association for Computational Linguistics
Divisions
Data Mining and Machine Learning
Subjects
Kuenstliche Intelligenz
Event Location
St. Julian’s, Malta
Event Type
Conference
Event Dates
17-22 Mar 2024
Series Name
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)
Page Range
pp. 2753-2772
Date
March 2024
Export
Grafik Top