Non-hereditary Maximum Parsimony trees.
In this paper, we investigate a conjecture by Arndt von Haeseler concerning the Maximum Parsimony method for phylogenetic estimation, which was published by the Newton Institute in Cambridge on a list of open phylogenetic problems in 2007. This conjecture deals with the question whether Maximum Parsimony trees are hereditary. The conjecture suggests that a Maximum Parsimony tree for a particular (DNA) alignment necessarily has subtrees of all possible sizes which are most parsimonious for the corresponding subalignments. We answer the conjecture affirmatively for binary alignments on 5 taxa but also show how to construct examples for which Maximum Parsimony trees are not hereditary. Apart from showing that a most parsimonious tree cannot generally be reduced to a most parsimonious tree on fewer taxa, we also show that compatible most parsimonious quartets do not have to provide a most parsimonious supertree. Last, we show that our results can be generalized to Maximum Likelihood for certain nucleotide substitution models.
Top- Fischer, Mareike
Category |
Journal Paper |
Divisions |
Bioinformatics and Computational Biology |
Journal or Publication Title |
Journal of mathematical biology |
ISSN |
1432-1416 |
Number |
- |
Volume |
- |
Date |
2011 |
Export |